大家好,今天小编关注到一个比较有意思的话题,就是关于没有大数据怎么做电商运营的问题,于是小编就整理了2个相关介绍没有大数据怎么做电商运营的解答,让我们一起看看吧。
武汉工程大学电子商务大数据运营跨境电商专业怎么样?
很好的专业。跨境电子商务是近年兴起的专业,我们作为制造业大国和贸易大国,就业前景良好。
该专业要求较好地掌握网络技术、信息化商务技术的基本技能与方法,能够应用电子信息技术手段从事网络环境下商务运营、产品设计和技术咨询服务的复合型、应用型工程技术人才。
电商运营如何做数据分析?
电商卖家们的KPI是什么?毫无疑问,一定是自家店铺的销售业绩。如何在不增加工作量并且不添加广告营销成本的前提下,给企业增加更多的收入呢?
小编给大家出个主意:增加订单平均价值。
平均订单价值(Average Order Value,AOV)是一个典型的电子商务指标,跟踪客户从网站或移动应用购买花费的平均货币金额。平均订单价值对于在线零售商而言,可以归结为利润的增长和品牌的持续成功。因为平均订单价值的增加和利润的增加有很强的相关性,当客户在每个订单上消费更多时,零售商也可以获得更多的整体利润。
如何计算平均订单价值:
总收入($)/已下订单数=平均订单价值($)
平均订单价值是通过将总收入按月统计(也可以按周或者按天)后除以当月(当周或当天)所下的总订单数来计算的。
例如,您本月从61个订单中获得的总收入为17053元,那么您的AOV就是279.57元。
截图来源:DataFocus(数据已脱敏)
在传统漏斗理论的指导下,最广为流传的公式就是:销量=流量*转化率*客单价。在这个理论的指导下,我们绞尽脑汁从增加流量、优化着陆页和详情页、舆论环境(包括刷单好评等)、提升客服专业力以及提高客单价等方面入手,尽可能的将每一个单项做到极致,从而获得销量的不断提升。
当绝大多数人都这么做而且人云亦云的时候,似乎也没有特别好的突破点。
真的只能如此吗?
以我们正在操作的某个产品为例说说我的思考:从16年6月到今年7月,我们一共付费新增3.75万个有效***,成交的有1600多单,总转化率为4.37%,按照传统的打法,即使将着陆页和详情页做到更好、客服水平再提升、狠抓舆论环境/刷单、搞各种活动促销,想达到10%的转化率还是很有挑战性的,我印象里看了一个电商的转化率平均水平在3%左右,真的要提到10%所需要的人财物和时间成本恐怕都不会太少。
那么,大的突围方向就很清晰了,90%的咨询未购客户就是很好的突围方向,也是一个充满想象空间的财富金矿。
具体的玩***在摸索中,在未取得具体数字之前为避免误人子弟,这里只能泛泛的说说自己的思考和方向选择。
至于新的理论模型,也期望与业界同行共同交流与研讨。
不知道为什么,说起电商分析,我第一个想到的是Zara(zara也逐渐从线上线下双线并行了)。Zara在近几年已经变成了大热快时尚零售品牌,迅速在增加了在中国的服装零售市场,你以为Zara钱赚的这么快仅仅就是因为他拥有一支“优秀的服装设计团队”而已吗?
NONONO,太天真了,Zara除了设计师团队以外,更重要的是他还拥有一个每天开放的数据处理中心。
这个数据处理中心有什么用呢,说的白话一点就是:如果Zara发现带有贴布的裤子比没有贴布的裤子卖得更好,或者某些颜色或合身裤的移动速度比另一些更快。Zara就通过这一点来进行分析并下达命令,多生产哪一款消费者喜欢的衣物。他们设计和制造具有最受欢迎功能的模型,以满足客户需求。
所以说啦,依靠零售分析和硬数据,而不是凭空猜测,可以做出明智的决策,以实现更高的利润。
当然,俗话说“说起来容易做起来难”。如何做出一个完美的零售行业数据分析呢?
我之前在网络上看到过一个零售行业数据可视化的案例,希望可以帮到题主:
这个案例建立了客户、物流和产品的三个部分的联系,把零售大屏分成了三个场景。
这三个场景:“人、货、场”,即客户、产品、店。
我们可以看到主屏幕利用了地图上的点来看出门店的分布情况,从各个地区的销售数据和人流的情况来直接反应出人与场的关系。再来看看子屏,子屏对人和货的分析来将数据***转化为业务能力。
李宁大屏对上面三个工作单元(“人、货、场”)进行交互操作,可以对数据可视化大屏上的内容、交互、动效进行切换控制。
到此,以上就是小编对于没有大数据怎么做电商运营的问题就介绍到这了,希望介绍关于没有大数据怎么做电商运营的2点解答对大家有用。